Current Density Impedance Imaging of an Anisotropic Conductivity in a Known Conformal Class

نویسندگان

  • Nicholas Hoell
  • Amir Moradifam
  • Adrian Nachman
چکیده

We present a procedure for recovering the conformal factor of an anisotropic conductivity matrix in a known conformal class, in a domain in Rn with n ≥ 2. The method requires one internal measurement, together with a priori knowledge of the conformal class of the conductivity matrix. This problem arises in the medical imaging modality of Current Density Impedance Imaging (CDII) and the interior data needed can be obtained using MRI-based techniques for measuring current densities (CDI) and diffusion tensors (DTI). We show that the corresponding electric potential is the unique solution of a constrained minimization problem with respect to a weighted total variation functional defined in terms of the physical measurements. Further, we show that the associated equipotential surfaces are area minimizing with respect to a Riemannian metric obtained from the data. The results are also extended to allow the presence of perfectly conducting and/or insulating inclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules.

Magnetic resonance electrical impedance tomography (MREIT) is an emerging method to visualize electrical conductivity and/or current density images at low frequencies (below 1 KHz). Injecting currents into an imaging object, one component of the induced magnetic flux density is acquired using an MRI scanner for isotropic conductivity image reconstructions. Diffusion tensor MRI (DT-MRI) measures...

متن کامل

Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological ...

متن کامل

Validation of a finite-element solution for electrical impedance tomography in an anisotropic medium.

Electrical impedance tomography is an imaging method, with which volumetric images of conductivity are produced by injecting electrical current and measuring boundary voltages. It has the potential to become a portable non-invasive medical imaging technique. Until now, implementations have neglected anisotropy even though human tissues such as bone, muscle and brain white matter are markedly an...

متن کامل

Electrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT).

Magnetic resonance electrical impedance tomography (MREIT) is a recently developed imaging technique that combines MRI and electrical impedance tomography (EIT). In MREIT, cross-sectional electrical conductivity images are reconstructed from the internal magnetic field density data produced inside an electrically conducting subject when an electrical current is injected into the subject. In thi...

متن کامل

Anisotropic WM conductivity reconstruction based on diffusion tensor magnetic resonance imaging: a simulation study

The present study aims to estimate the in vivo anisotropic conductivities of the White Matter (WM) tissues by means of Magnetic Resonance Electrical Impedance Tomography (MREIT) technique. The realistic anisotropic volume conductor model with different conductivity properties (scalp, skull, CSF, gray matter and WM) is constructed based on the Diffusion Tensor Magnetic Resonance Imaging (DT-MRI)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2014